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Preface

The three-dimensional numerical model verification of hydrodynamic con-
ditions for the Houston-Galveston Navigation Channels Project, Texas, as
documented in this report, was performed for the U.S. Army Engineer
District, Galveston. Galveston District personnel participating in the study
were Mr. Mike Kieslich, Life Cycle Project Manager; Mr. Martin Howland,
Study Manager; and Mr. Ed Reindl, Engineering Division, point of contact.

This is Report 3 of a series. Report 1 describes the data collection,
Report 2 presents the two-dimensional numerical modeling of hydrodynamics
for the navigation study, and Report 4 presents the three-dimensional numeri-
cal modeling of hydrodynamics and salinity testing program.

The study was conducted in the Hydraulics Laboratory (HL) of the
U.S. Army Engineer Waterways Experiment Station (WES) during the period
December 1990 to March 1994 under the direction of Messrs. F. A.
Herrmann, Jr., Director, HL; R. A. Sager, Assistant Director, HL; and
W. H. McAnally, Jr., Chief, Estuaries Division (ED), HL. Mr. W. D.
Martin, Chief, Estuarine Engineering Branch (EEB), ED, was Project
Manager.

This work was performed and the report prepared by Dr. R. C. Berger,
ED; Dr. R. T. McAdory, EEB; Mr. W. D. Martin, EEB, and Mr. J. H.
Schmidt, EEB. Much of the data manipulation, plotting and daily computer
operations on this project were performed by Mr. Jay Hardy and
Mr. Lenwaski Campbell, ED, and Ms. Cassandra Gaines, EEB.

At the time of publication of this report, Director of WES was Dr. Robert W.
Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.




Conversion Factors,
Non-SI to Sl Units of
Measurement

Non-SI units of measurement used in this report can be converted to SI units

as follows:
Multiply By To Obtain
feet 0.3048 meters
miles (U.S. nautical) 1.852 kilometers
miles {U.S. statute) 1.609347 kilometers




1 Introduction

Background

In the 19th century, Galveston Bay existed as an immense, shallow estuary

accessible to light-draft vessels. The study area is shown in Figure 1. Condi-
tions then, as today, created a fertile environment for shell and fin fish.
Areas of the bay, such as Red Fish Reef, were, according to verbal reports,
so shallow that during low tides cattle could be driven across the bay. Sub-
sequently, as the Texas Gulf Coast developed, channels were constructed to
provide access to Galveston, Texas City, and Houston, TX, for increasingly
deeper draft vessels.

The U.S. Army Engineer District, Galveston, in conjunction with the study
sponsors, the Ports of Houston and Galveston, propose to deepen the existing
navigation channels. Specifically the Houston Ship Channel is to be deepened
to 45 ft! and widened to 530 ft. The Galveston Channel is to be deepened to
45 ft and widened to 450 ft.

A memorandum dated January 8, 1990, from the Chief of Engineers to the
Secretary of the Army established a commitment by the U.S. Army Corps of
Engineers (USACE) to incorporate several recommendations or actions con-
cerning the proposed Houston-Galveston Navigation Channel project. Among
these recommendations were the following items:

a. Conduct ship simulation modeling to refine proposed channel widths.

b. Use a state-of-the-art model of hydrodynamics and salinity to assist in
refining estimates of project-induced changes to the circulation patterns
and salinity regime of Galveston Bay, and to assist in the identification
of beneficial uses of dredged material.

¢. Refine evaluation of project-induced environmental impacts, including
those to shrimp and fin fish, and develop adequate, feasible mitigation,
if required.

1 A table of factors for converting non-SI units of measurement to SI units is found on page v.

Chapter 1 Introduction
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d. Continue to coordinate project studies with concerned Federal and State
resource agencies.

The ship simulation was conducted previously (Lin 1992; Hewlett 1994,
and Webb and Daggett 1994). This report deals with item b. In order to
achieve these recommendations, a fully verified three-dimensional (3-D)
hydrodynamic model would be required. This report outlines the model
development and verification to actual conditions that existed during the
period July 1990 to January 1991. This is report 3 of a series of four reports
describing field and numerical modeling conducted in support of these com-
mitments. The purpose of this report is to describe validation of the 3-D
circulation and salinity model.

Objective

The objective of this investigation is to produce a 3-D hydrodynamic and
salinity model validation sufficient to demonstrate the model capability to
estimate project-induced change. Since the primary interest of the overall
study is the impact of the project upon oyster production, the measure of
validation sufficiency is based upon the needs of the oyster model.

Chapter 1 Introduction
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2 The Model

Background

The numerical model of Galveston Bay is actually the combination of three
components:

a. The analytic equations. These equations describe the physics of the
system. These are basically conservation of water and salt mass and
momentum equations (Newton’s Second Law). Within these equations
the most important simplification is the hydrostatic assumption. This is
a common assumption in open channel flow equations, and means that
vertical accelerations are assumed to be negligible.

b. The computer program. This code contains the discretized description
of these basic equations. Care must be taken in the development of the
program so that these discrete equations converge to the analytic equa-
tions as the resolution is increased. The program also includes repre-
sentations for boundary forcing functions, such as the tide, wind, bed
shear stresses, freshwater inflow, and Gulf salinity. There are also the
descriptions of the vertical turbulence and the density/salinity relation-
ship.

¢. The discrete representation. This is the node and element topology (the
mesh), bathymetric representation, actual boundary data.

This collection is the Galveston Bay model.

The task of modeling Galveston Bay hydrodynamics and salinity regimes in
three dimensions for long periods of simulation with several different geome-
tries requires use of a sophisticated numerical code. Several codes were con-
sidered before choosing RMA10-WES. These codes can be generally classi-
fied as either structured or unstructured and explicit or implicit. A structured
code expects a certain inherent order for the mesh topology. This allows
relatively fast solving of the algebraic equations, but it is difficult to generate
useful grids for complex geometries. An unstructured code, often a finite
element approach, allows tremendous flexibility in matching geometric

Chapter 2 The Model




features; and the generation of numerical meshes is fast, even in these com-
plex regions. This flexibility, however, can come at computational expense.

The terms “explicit” and “implicit” imply, respectively, a trade-off
between computational speed per time-step but with a short time-step, versus a
slower computational speed per time-step without a severe time-step length
restriction. The RMA10-WES is unstructured and implicit. This mode is a
better approach to handle a complex estuary in which many plan meshes are
to be developed and which needs high resolution in regions of large velocity
gradients. The need for multiple meshes in a complex geometry rules out a
structured approach, and the large velocity where the resolution must be high
poses too severe a penalty for the explicit approach.

Model Description

The RMA10-WES code is a Galerkin-based finite element solution to simu-
late 3-D unsteady open channel flow. The model was originally developed by
Dr. Ian King of Resource Management Associates (King 1988) and exten-
sively modified by the staff of the Hydraulics Laboratory, U.S. Army
Engineer Waterways Experiment Station (WES). The code represents 3-D
hydrodynamics using conservation of fluid mass, horizontal momentum, and
salinity/temperature transport equations. As is typical of shallow-water
models, the vertical accelerations are assumed to be negligible (the hydrostatic
assumption), which allows the vertical velocity to be calculated through mass
conservation. In the interest of computational efficiency the code also simu-
lates one-dimensional (1-D) and two-dimensional (2-D) flow as well as tran-
sitions between 1-, 2-, and 3-D. The code is implicit in time and resolves the
nonlinearities via Newton-Raphson iteration.

In a 3-D model, or a laterally integrated 2-D model, the vertical extent of
the domain is not known until the depth is calculated, and of course, one
cannot make the calculations until the computational mesh is developed. This
apparent impasse is avoided by transforming the domain at each time-step to a
mesh grid. The particular transformation used maps the water surface to a
constant elevation, the bed is unchanged, and all elevations in between are
stretched proportionally. The mesh representing existing conditions is shown
in plan view in Figure 2. The mesh consisted of 6,190 surface nodes in 1,996
surface elements and 12,270 nodes in 5,112 total 3-D elements. The model
was configured as largely 3-D within the bay except for the West Bay west of
the causeway (Figure 3). The 3-D portion consisted of one layer in the
shallow areas of the bay and up to three layers (seven nodes) in the channel.

The salinity/density relationship in the model is based on Pritchard (1980).
The vertical turbulence is a combination of the Mellor-Yamada Level II
(Mellor and Yamada 1982; Adams and Weatherly 1981) and Henderson-
Sellers (1984). The wind stress is a quadratic relationship using the specific
coefficients developed by Wu (1980). The effect of wind waves on vertical
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Figure 2. Mesh representing existing conditions

mixing is simulated in the manner of the numerical model CE-QUAL-W?2
(U.S. Army Engineer Waterways Experiment Station 1986).
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Figure 3. 2-D and 3-D portions of the model. Gray areas are 3-D
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3 Model Validation

Data

The period of field data collection was from 19 July 1990 to 15 January
1991. The bulk of these data was collected by moored salinity and velocity
meters, as well as tide gauges mounted throughout the system. Within this
6-month time, a short-duration intense field data collection was conducted on
19-20 July 1990. These data included velocity and salinity measurements over
depth at five ranges along the navigation channel. Complete details of the
field collection may be found in Fagerburg et al. (1994).

Boundary files were constructed with the best available observed data. The
data used to drive the model tide were the National Ocean Service/National
Oceanic and Atmospheric Administration Station 877-1510 Pleasure Pier tide
gauge data shifted forward 1.31 hr to account for the model boundary approx-
imately 26 miles offshore from Pleasure Pier. The actual data were filtered to
remove signals of periods less than 3 hr. The salinity at the boundary was
estimated by using the published averages supplied by Cochrane and Kelly
(1986). Figure 4 presents these data as the solid line composed of long-term
monthly average salinity values. The discrete points are actual measurements
made during the year of the field data collection, 1990. The WES field data
collection began about day 200 and continued through the year. The long-
term average Pleasure Pier data of Cochrane and Kelly are not so strongly
subject to local short-term dilution and so appear to be a better boundary
condition data set for the WES model boundary, which is far off shore. This
was the source of the model boundary salinity values. The wind data were
provided by two sources. WES established a meteorological station at loca-
tion S10.1 (Figure 6) for the period 19 July 1990 to 15 January 1991. The
National Weather Service data at Houston International Airport were also
obtained for this period. A correlation was derived between the National
Weather Service and WES data so that readings at Houston International could
be used in Galveston Bay. This correction was only for wind magnitude, not
direction. The correlation was as follows:

Chapter 3 Model Validation
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Figure 4. Comparison of model boundary and 1990 Pleasure Pier salinities

W = 0.850W, + 5.92 )

where

W, = wind speed, mph, in Galveston Bay
W, = wind speed, mph, at Houston Intercontinental Airport

These data in turn were used to calculate the shear stress at the waier surface
7, using the expression:

1, = Co, W2 @)

C is described by Wu’s (1980) relationship and W is wind speed, mph, and p,,
is air density

C = (0.8 + 0.0656W) x 1073 €)

Chapter 3 Model Validation

e




Y " MORGAN'S
\ POINT / /

S15.1 N~
[N
L 40" =
. 4514.0

CLEAR OS]
LAKE : MARSH

7 516.0 / POINT

J, S$12.0 ) |
i) 0 3 7
@ S $12.1 , S7.0 4

k!
— 30" 2 as100 BN /b
< ‘}; - c’)SSJEPST <
' OS3.0 HANNA .

REEF
Aﬁ 0S6.1

TEXAS CITY 630
DIKE :
.-‘
'j >~o0.0
— 20" v 55 . 52.0 SOUTH
; o : S75 JETTY
FORT POINT
SCALES
LEGEND l\(J)ALiTIgAlé hiILES
— 29 | 107 " A WATER LEVEL RECORDER
, O FIXED CURRENT METER STATUTE MILES
012345
< KILOMETERS
S $an LUSS 012345
10 pass 95 00 50° 40" 95 30

| | |

Figure 5. Basic long-term survey data collection equipment locations. (Stations S$1.0,
S2.0, $5.5, $6.0, S6.1, S8.1, S9.0, S11.1, 812.0 and S15.1 record salinity as
well.)

Validation Approach

A two-stage model validation process was used. In the first stage,
adjustments were made in the bed roughness of the estuary, since this

10 Chapter 3 Model Validation
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parameter has a significant uncertainty. The normal process is to first adjust
the roughness to match the tides, after which point one then considers the
velocity and salinity results. The first stage consisted of comparison to the
brief period around the time of the intensive over-the-side data collection, 19-
20 July 1990.

In the second stage, the model was run and compared with the long-term
prototype data set with no additional adjustment. The second stage, used to
verify that the model behaves as the prototype with no additional adjustment,
covered the time from 19 July 1990 to 15 January 1991. A very high flow
for the Trinity Basin rivers occurred in June, so the data include significant
salinity variations as the system moved from flood to near drought conditions
during the 6 months data were collected. Modeling such a period of drastic
change was a very rigorous test of the model’s capability.

The purpose of the validation process is to determine the ability of the
model to reproduce the prototype system. It is important that the parameters
that are critical to the ecosystem be reliably reproduced. In order to answer
the basic question of whether any further adjustment should be made to the
model, the sensitivity of the model to the boundary conditions of Gulf salinity
and freshwater inflow was evaluated. This, coupled with an estimate of the
uncertainty in boundary condition values, was used to determine that the
reproduction of salinity is within the uncertainty of the boundary conditions.
Having insured this, no further model adjustments would be useful for the
purpose of this study. The second basic question is whether the degree of
agreement is sufficient for the environmental decisions.

The model behavior was also compared to historical observations and field
reports to check the overall ability of the model to not only reproduce
measured values at discreet points, but also to qualitatively reproduce hydro-
dynamic and salinity results over large areas of the bay. This comparison was
concerned with the model behavior rather than measured values. The ability
of the model to reproduce known phenomena and demonstrate causes of
known phenomena greatly strengthens the credibility of the model.

Estuarine model adjustments proceed in order from tides, velocity, and
then salinity. The initial comparison was based on the prototype data from
the period of the intense over-the-side survey conducted on 19-20 July 1990.
The adjustment parameter was the bed roughness as this is the parameter
about which the uncertainty is the greatest. In the tidal adjustment phase the
roughness for fairly large general regions and bed types is set s0 that model
tide results compare well with the prototype observations. The further adjust-
ments for velocity consist of some additional finer scale roughness changes so
that the distribution of velocity may be slightly improved, but the overall
roughness is the same as that from the tidal adjustment phase. If the salinity
values then do not match, the usual problems are inaccurate freshwater inflow
or the initial startup causing error since the salinity in atd of itself is only
indirectly affected by roughness. In ihe 3-D model the bed friction is a
function of Manning’s n; and since it uses bed velocity instead of cross-section

11
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averaged velocity, the value of n is somewhat higher than data from literature
might indicate. The bulk of the 2-D regions and shallow bay was modeled
using Manning’s roughness of 0.023 while the channel was about 0.038.

Verification

This section discusses the comparison of model and prototype through a
series of plates for water surface elevation, current velocity, and salinity over
a specific time period. These plates depict the period August-November
displayed in 1,000-hour segments. Long-term salinity comparisons are impor-
tant for this study. Therefore these plates show the complete verification
period salinities on a single plot for each station, as well as the 1,000-hour
segment plots. The locations of the stations are shown in Figures 5, 6, and 7.

These plates include all model/prototype comparison data. The reader
must be aware that the field meters are subject to a variety of interferences
and can occasionally give bad readings. These are usually more frequently
seen in the salinity and velocity readings than in the water surface elevations.
None of the raw data values have been eliminated in the plots though prob-
lems with meter drift or other erratic behavior have been noted.

Water surface elevation comparisons are shown for the entire 6 months for
stations 1.0, 3.0, 5.0, 7.0, 10.0, 14.0 and 16.0 in 1,000-hr segments in
Plates 1-15. The station 1 plots show a gage failure for hours 4900-5700, and
the plot could only interpolate a straight line through this gap. An example of
another type of field data anomaly is shown by the spikes at hours 4800,
4900, and 5250 for station 10. These are caused by boat waves, localized
storms, or gage error. The model is not intended to reproduce such events.
These comparisons represent the model’s ability to reproduce water surface
elevations driven by the astronomical tides as well as the wind fields.

Direct comparisons for currents are shown in Plates 16-45. Here positive
is taken as landward-directed flow and negative is ebb or gulfward flow.
These velocity meters are moored at a fixed elevation. There are at most two
recording heights: roughly middepth and three-quarters depth. A suffix of m
or ¢ following the station number indicates middepth or three-quarters depth,
respectively. The model and field data show two dominant periods, one
diurnal and the other fortnightly. The velocity comparisons are generally
quite good near the entrance and near the upstream region of the model, but
magnitudes are somewhat low just inside the entrance, station 6.0, i.e. at
stations 6.1 and 9.0.

Chapter 3 Model Validation
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Plates 46-93 are the salinity histories of model and prototype.! Plates 46-
53 show the complete history of model to prototype comparisons, with the
field data represented by discrete measurements made during meter servicing.
This allows one to see the ability of the model to track large salinity varia-
tions. Detailed data are shown on Plates 54-93 in 1,000-hr increments for
August-January. An additional set of symbols is also shown to indicate a
discrete sample retrieved during servicing of the moored meter. These are
particularly important in the near-Gulif, or high-salinity, stations. Here bio-
logical fouling is a significant problem causing meter drift. When the meters
were serviced, they were cleaned and the problem temporarily fixed. Their
readings abruptly returned to closely match these discrete samples. The drift
is generally quite obvious: hours greater than 6000 for station 1.0, hours
6400-7600 on station 2.0m, near hour 7000 at station 6.1m, and hours 6100-
6500 on station 6.1t are examples of readings obtained from a fouled meter.

The stations in West Bay (stations 4.0 and 5.0) show the model salinity to
be low compared with prototype early in the simulation but tending to con-
verge over time. This appears to be an artifact of the low energy (high
residence time) of West Bay. If the initial salinity field is in error, it takes a
Jong time for the model to "heal" this region. Throughout most of the bay
system the comparison is very good.

The current velocity over the ranges that were taken during the over-the-
side survey are shown in Plates 94-109, and the corresponding salinity values
are Plates 110-125. These data were collected at each range along a transect
that crossed the channel from west to east. The planned layout was for sta-
tion A on each range to be in the shallows west of the channel and similarly
station D to be east of the channel. Stations B and C were located at the
bottom edges of the charinel. However, at ranges 3 and 4 all stations were
placed outside the channel to avoid ship traffic.

Discussion

Model sensitivity

The comparison of the model to prototype undertaken in a verification
needs to be judged based upon knowledge of associated uncertainties. If the
uncertainties in the prototype data, boundary conditions, and driving forces
have an impact larger than the differences between the model and prototype,
then there is certainly no need to go back and make additional adjustments and
undertake another verification. The uncertainties in the prototype data are
difficult to ascertain without a great deal more sampling. There are also some
unceriainties generated by driving forces such as the wind field that are diffi-
cult to quantify. Two of the most prominent items that affect salinity

1 Salinity meter data were combined for the meter pairs $8.0 and S8.1, S$11.0 and S11.1,
S$15.0 and S15.1.
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distribution in the bay are the freshwater inflow and the Gulf salinity
boundary. The variability or sensitivity of the model to variations in these
boundary conditions can be defined. In summation there are many sources of
uncertainty in the model study. Only two of these sources in are considered
in this analysis. Therefore, the calculated uncertainty is lower than the true
uncertainty, but serves as a useful indicator.

Figure 4 shows the Pleasure Pier monthly average salinities (using 15 years
of data) as the solid line and the individual readings taken in 1990 as squares.
A straight line connection is shown between average points for each month.
The verification begins about day 200. The Gulf boundary for verification as
well as the subsequent testing uses the 15-year average value. Though the 15-
year average line is an imperfect fit, it is not apparent that any other single
monthly average line would be superior. From this record it was estimated
that a probable uncertainty is at least 2 ppt; i.e., the true value has a 50%
probability of being within +2 ppt of the average curve.

In the case of freshwater inflow it was estimated that the probable uncer-
tainty was about 10 percent. It is likely that 10 percent may be low since
variations of 10 percent are considered appropriate for a good discharge
measurement. In this case there is a significant ungauged area, so these fresh-
water discharge values are probably somewhat less accurate. However, for
the sake of the sensitivity analysis, this value is sufficient.

Galveston Bay system sensitivity to these parameters can vary throughout
the year. For example, during flood conditions, all of Trinity Bay is fresh
water (salinity of O ppt), and so a 10 percent variation in freshwater inflow
will have minimal to no effect on salinity there. An important period of time
for the oyster model (low freshwater inflow, high salinities) occurs in later
summer, so this is the time frame considered.

The freshwater sensitivity was evaluated using low-, medium-, and high-
flow runs, from which a regression analysis supplied the salinity for a
10 percent freshwater inflow change. The Gulf boundary sensitivity was
evaluated by rerunning the verification period with a 2-ppt increase in the
boundary salinity. The results are shown in Table 1.

The first column is the general location in the bay and the specific point
used in this analysis (Figure 8). The second column is the probable
uncertainty in bottom salinity due to a 10 percent decrease in freshwater
inflow, and the third column is the variation in bottom salinity due to a 2-ppt
variation in the Gulf boundary. The fourth column is a combination of these
two (assuming these uncertainties to be independent, the vector sum of the
two boundary uncertainties is appropriate).
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Table 1

Model Salinity Response Due To Boundary Uncertainty

Salinity Uncertainty
due to 10 percent Salinity Uncertainty
Variation in due to 2-ppt Varia-
Freshwater tion in Gulf Salinity Combined Salinity
Location Boundary, ppt Boundary, ppt Uncertainty, ppt
Trinity Bay Point 2 1.0 1.1 1.5
Upper West Bay 0.8 1.4 1.5
Point 15
Midbay Point 6 0.8 1.3 1.5
Point 9 0.6 1.0 1.2
East Bay Point 7 1.0 0.5 1.1
West Bay Point 12 0.5 1.4 1.5
Boliver Roads 0.2 1.8 1.8
Point 5

Generally, the areas most upstream are more sensitive to freshwater inflow
and less sensitive to the Gulf salinity boundary. Conversely, the areas near
the Gulf are typically relatively insensitive to freshwater inflow variation but
are strongly affected by the Gulf boundary variation. The major exception is
East Bay, which is far from the freshwater sources and quite near the Gulf but
sensitive to freshwater inflow (1.0 ppt variation) and fairly insensitive to the
Gulf variation (0.5 ppt variation). This demonstrates that the Trinity River
inflow reaches East Bay and is responsible for the depressed salinity there.
The overall bay combined uncertainty is about 1.5 ppt. Therefore, if the
model to prototype comparison is generally within this range, no additional
adjustment is useful. The effect will be drowned by boundary uncertainty.

Quantitative comparison

In this section the model verification to the recorded prototype data is dis-
cussed. The discussion is focused upon the needs of the oyster model.

The oyster model uses the output of the 3-D hydrodynamic and salinity
model. It then computes oyster production under various biological
influences. A complete discussion of this model can be found in Hofmann,
Powell, Klinck, and Wilson (1992). The oyster feeding is dependent upon the
velocity magnitude, and the growth and mortality rates are strongly dependent
upon the salinity. These data as well as the water depth (or tides) are supplied
by the hydrodynamic model. Since the oyster response is slow, the long-term
fluctuations in salinity are considered more important than the diurnal and
semidiurnal variations. Therefore, the hydrodynamic verification discussion
will consider the comparison of velocity magnitude in the form of the root
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mean square (RMS) velocity, and the salinity verification discussion will
consider the mean difference between the model and prototype, trends from
the correlation coefficient, and a relative error term d.

A model’s verification is usually judged as successful or not in a somewhat
arbitrary manner. Typically, this is soiely based on the model investigator’s
experience. Here, however, the hydrodynamic model’s suitability to deliver
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input hydrodynamics and salinity for the oyster model can be judged based
upon other input parameters used in this oyster model. For example if the
regressions describing oyster growth dependence upon salinity have uncer-
tainty that is larger than the salinity difference front model to prototype, then
the hydrodynamic model should certainly be sufficient.

Tides

In order to understand the model tidal behavior, it is necessary to remove
the wind-driven signal and conduct a harmonic analysis of the tidal signal. In
this manner the major tidal components of amplitude and phase can be dis-
cerned. This was conducted for the stations along the navigation channel,
stations $1.0, $3.0, S10.0 and S16.0 (Figure 5). The data were filtered to
remove periods shorter than 3 hr and longer than 35 hr. This left the
principal diurnal and semidiurnal components. Of these, the most significant
prototype tidal constituent amplitudes at station S1.0 are listed in the following

tabulation:
Constituent Period, hr Amplitude, ft
K, 23.93 0.64
0, 25.82 0.57
M, 12.42 0.44
P4 24.07 0.18

The overall amplification is computed by calculating a group amplitude as the
vector sum of each constituent. Figure 9 is a plot of the tidal amplification
along the channel. This is the ratio of the group amplitude at each station to
that at station S1.0. The most significant drop in amplitude occurs across
Bolivar Roads (mile 2). From station $1.0 to $3.0 (miles 0 and 8.1) the drop
is roughly 44 percent of the tidal range. The model matches this precisely.
Upstream of this point the prototype shows a slight amplification of the tide in
spite of the relatively shallow bay. The model continues to drop at sta-

tion S10.0 (mile 16.3) to 81 percent of prototype. The model amplitude
increases at station $16.0 (mile 26.4) and is 85 percent of prototype. The
amplification in the upper bay is quite likely due to local features such as the
reef above station S10.0 and the estuary boundary above station $16.0. The
model will generally be deeper than the prototype at these nearshore features
to avoid element drying. If the amplification is local, then the overall tide
range in the prototype away from these features would be lower than shown,
the tidal prism would be correct in the model and the velocity and salinity
distribution would match. The overall model roughness values appear reason-
able and the model salinity distribution is excellent.

As further support for the model’s roughness, consider the phase lag pre-
dicted by the model. Figure 10 shows the average model and prototype phase
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Figure 9. Model/prototype tidal amplitude comparison

lag relative to station S1.0. The average phase lag is calculated as the
arithmetic average of the four major tidal constituents. At station S3.0

(mile 8.1) the model leads the prototype by 23 min; at station S$10.0

(mile 16.3) the model lags the prototype by 11 min; and at station $16.0
(mile 26.4) the model leads the prototype by 7 min. Above station S10.0 the
character of the tide appears to be that of a standing wave, and Gulfward of
station S10.0 it is a progressive wave. The overall lag from entrance to upper
bay is 6 hr, and the model is off by only 7 min. These phases are very good,
indicating that the overall depths and roughness in the model are good as well,
and it is likely that the discrepancy in amplification in the upper bay is due to
local features.

Velocity

The key factor of interest for oyster productivity regarding velocity is the
velocity magnitude. Therefore, it is useful to investigate the model’s ability to
reproduce velocity magnitudes compared with those of the prototype. The
actual comparisons are shown in Plates 16-45. To aid in evaluation, these
velocities have been summarized using RMS velocity of model and prototype
as shown in Figure 11.

The stations are generally arranged from the entrance to upstream. A ¢
following the station label indicates three-quarters depth (from the surface) and
an m indicates middepth. The strongest discrepancies are at stations S2.0 and
S6.1. At 82.0 the model is higher than the prototype. This is also
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recognizable in the velocity time-history plates for this station (Plates 16, 22,
28, 34, and 40) where it is apparent that the model compares very well early
in the simulation, but later the prototype readings drop substantially in magni-
tude. Near the end of this period the prototype records no flood direction
velocity. The meter behavior is sufficiently erratic to suggest this is a prob-
lem with the prototype meter record. It may be that the location near the
channel bank is the problem. The velocities are low and show almost no
flood currents. At this point in the channel itself these results seem counter-
intuitive. For station S6.1, however, the prototype fairly consistently indi-
cates stronger velocity than the model. Generally, over the bay the RMS
velocity in the prototype varies between 0.19 and 1.65 fps; the model is from
0.17 to 1.94 fps. The ratio of model/prototype RMS overall station average is
0.93.

Salinity

The ability of the model to reproduce the long-term salinity regime of the
bay is the most critical measure of the model’s suitability. The period
recorded begins after a very large flood on the Trinity River. The salinities in
Galveston Bay are then quite low. The flows drop off and the salinity
rebounds. This results in a rigorous test of the model to track salinities over a
large range. Since oysters’ response to salinity variation is slow, the
adequacy of the salinity verification is judged principally by the model’s
ability to match the long-term mean and trends rather than shorter period
fluctuations. For this reason statistics have been chosen that reflect these
important elements. Table 2 shows the results for the long-term verification.

The first column is the station identification (Figures 5 and 6). An m or ¢
after the station indicates middepth or three-quarters depth, respectively.
Stations reported in this table are those that did not suffer from severe bio-
logical growth-induced drift. This was a problem only in the Bolivar Roads
and Gulf of Mexico region. There was no editing of obviously bad prototype
data such as early in the verification period at station $8.0. Such editing
would improve the comparison but would call into question the decisions
made in deleting bad data. On occasion the moored meter failed but the
servicing continued, which reflects a longer record, in which case these hand-
held meter readings give a better picture of the prototype behavior and were
used in this analysis for three stations (§7.0, $13.0, and S14.0). The second
column is the number of hours covered in the data record. This is the dif-
ference between the first and last recorded hours. The major trends occurred
during the first 3 months (2,200 hr), and so correlation coefficients and
statistical agreement are calculated only for stations that include much of this
period. The third column is simply the mean difference between the model
and the prototype. The fourth column is the mean absolute error (MAE), or
the mean of the absolute values of the differences. The fifth column is the
correlation coefficient of the model in comparison to the prototype readings.
This statistic indicates how well the model follows the prototype trends;
however, it is an incomplete indicator in that uniform model to prototype
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Table 2
Long-Term Salinity Verification Statistics
Mean
Difference MAE
Length of {model - {!model -
Station Record, hr prototype) prototype|} Correlation d
Trinity Bay
S11.0 3389 -0.3 1.3 0.85 0.91
S11.2 1060 -1.8 2.0 -
514.0° 3694.5 -0.4 1.1 0.97 0.98
$15.0 4137 -0.8 1.8 0.89 0.94
Upper West Bay
S12.0m 883 0.0 2.2 -
S$12.0t 883 -2.2 2.4 - ---
S12.1t 382 -0.6 1.4
S12.1t 1940 0.5 2.0
$13.0 3459.5 -3.3 3.3 0.98 0.74
Midbay
S6.1m 1269 -0.4 2.4
S9.0m 1419 -1.2 2.4 -
$9.0t 1419 -1.6 3.1 ---
East Bay
s7.0" 3454.5 -0.3 0.8 0.97 0.98
$8.0 3692 -1.4 1.9 0.81 0.85
West Bay
S4.0 4155 -1.5 3.0 -0.45 0.10
S5.0 2318 -3.7 3.7 0.78 0.56
S5.5 1090 0.6 0.8

1 Based on hand-held meter readings taken during servicing.
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offsets are not revealed. This can be seen from the mean and MAE values.
The sixth column is the statistic d, proposed by Willmott (1982) and Willmott
et al. (1985), which is a fairly good reflection of the model’s capability, indi-
cating how well it captures trends and also predicts any shift in salinity. It is
defined as follows:

LM - Py
T (M) o+ |PylY

d=1 - 0<d<1 )

where
M; is the model reading i
P; is the prototype reading i
M'; is the model reading i minus the prototype average value
P’ is the prototype reading i/ minus the prototype average value

The stations are grouped by topographic regions of the bay. It is evident
that West Bay provides a much poorer comparison than the other regions.
This can be substantiated by checking the salinity plots of this region
(Plate 47). The differences appear to be a result of a substantially low initial
salinity in the model (these were input, based upon the modeler’s judgment)
and the very high residence time of West Bay. It takes longer for the initial
salinity estimate to be swept out of the system. After about 3 months the
comparison is good.

Leaving aside the readings in West Bay, the model mean salinity is 1.0 ppt
lower than the prototype. The average station MAE is 2.0 ppt. The worst
station mean comparison is S13.0, which is low by 3.3 ppt. Ten of the four-
teen stations had means that were within 1.5 ppt of prototype (this is approxi-
mately the precision that the sensitivity analysis attributed to the probable
uncertainty in the boundary conditions). Six station means are off by less than
0.5 ppt. The comparison of the mean error shows the model to be in excel-
lent agreement with the prototype.

The correlation coefficient is an indicator of how well the model follows
the trends of the prototype. Outside of the West Bay area the correlation
coefficients range between 0.81 and 0.98, with an average value of 0.91. A
correlation of 1.0 indicates perfect linear correlation. Again the model is
reproducing the trends of prototype salinity very well. Together the
correlation coefficient and the mean give a relatively complete picture, though
individually each is insufficient. The statistic d seems to do a better job of
reflecting the model performance than does the correlation coefficient or the
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mean alone. This statistic combines effects of not only how well the com-
puted value follows the actual trend, but also how close the actual values
compare to those computed. The parameter d gives results which are more
intuitive than the others. For example, $13.0 results show a mean error of
3.3 ppt but the correlation coefficient is 0.98. These together imply that the
model values are parallel to the prototype but shifted by about 3 ppt. The
value of d for S13.0 is 0.74, which, unlike the correlation coefficient, is not
the best comparison found in the model. In fact, the best values of this statis-
tic in the model are S$14.0 and S7.0, which are about 0.98 each. These are
stations in which the comparison appears to be very good. The values of d at
stations S11.0 and S15.0 are also above 0.9, and the value at station S8.0 is
0.85, all of which are rather good.

While experience indicates that overall the salinity verification is an excel-
lent comparison, there are two basic questions that need to be answered to
determine if the model is suitable for its intended purpose:

" a. Is there a sound reason to require any further adjustments to the model?

b. Is this model adequate (as determine by this verification) to drive the
oyster model?

One must remember that this long-term verification was made with no
changes beyond the original adjustments made during the early short-term
period. For a study in which the model is expected to make predictions, it is
reassuring to see that the model represents the physics of the system well, so
that it can follow prototype trends unaided by further adjustments.

As a result of the sensitivity analysis, it can be stated that the model-to-
prototype differences are comparable to or less than the salinity uncertainty
due to the freshwater inflow and Gulf salinity. Therefore, any further adjust-
ment improvement will be swamped by the uncertainty of the boundary con-
ditions alone, and no additional adjustment is advisable.

The second question remains whether this is good enough for input to the
oyster model. The answer depends upon the error in the input parameters
used in ecosystem models and environmental evaluations. In this regard the
average salinity correlation coefficient within the bay is 0.91, which is higher
than many other parameters used to describe the oyster productivity. For
example, a description of seed production is given by Chatry, Dugas, and
Easley (1983) as seed production = -43.89 + 2144.5 (sum monthly salinity
deviations from the optimum regime). This has a correlation coefficient of
0.837. Other rules of thumb are that the salinity variability of the oyster
parameters is between 10 and 20 percent, which is on the order of 2 ppt or
s0, and so is less restrictive than the results of the boundary uncertainty in this
study. Therefore, the input from the hydrodynamic model lies within the
acceptable bounds of the other input to the oyster model, and it cannot alone
be unacceptable. Hence the verification is good and the hydrodynamic model
should be suitable for that purpose.
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Qualitative comparison

Finally, it can be shown that the model produces general patterns of
behavior that can be compared with descriptions of the bay from literature or
from observations. While these items are generally not quantifiable, they do
provide a strong basis to indicate that the model is a reliable archetype/replica
for the natural system. These model observations are as follows:

a. From Figure 12 it is apparent that a strong freshwater flow from Trinity
River flows around Smith Point into East Bay in the model. This has
been observed in the prototype in the location of large oyster kills near
Smith Point during high-flow periods. Furthermore, this explains the
low salinity of East Bay, even though it is close to the Gulf and has
very few direct freshwater sources. Figure 13, which was derived from
long-term prototype data collection and presented in Orlando et al.
(1991), shows isohalines for the period April-June 1985 from which one
can also infer this flow feature.

b. There is a flood-dominant channel up the center of Trinity Bay in both
the model (Figure 12) and the prototype (Figure 13).

¢. The salinity is lower east of Atkinson Island than west. This has also
been confirmed by nonpublished field measurements made by Texas
A&M University.1

d. There is net drift outward along the sides of Trinity Bay in the model.
This was noted by WES field investigation personnel observing shrimp
boats that drifted outward along the shore.

e. There is an eddy in the net circulation in upper Trinity Bay in the
spring (Figures 14, 15, and 16). Results from a NASA (1971) study of
isotherms from discharge from the first completed generator at the
Cedar Bayou Power Plant from May 17, 1971, show the likelihood of
there being an eddy as well.

f. The model shows a flood dominance along the channel (Figure 17) that
is particularly strong in the upper bay. This is confirmed in the data of
previous WES prototype data (Bobb, Boland, and Banchetti 1973) as
well as Ward (1980), who states, "In the open bay, the lower 25 miles,
the tidal mean flow is directed upstream throughout the depth."

Figure 17 is contours of ebb predominance calculated at a point as the
time integral of ebb velocity divided by the time integral of velocity
magnitude over a tidal cycle, and expressed as a percentage. One

' personal communication, December 1992, Dr. Eric Powell, Texas A&M University,
College Station, TX.
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Figure 12. Isohaline plots, BASE versus Phase | bathymetry, low freshwater inflow, exist-
ing hydrology, bottom salinity

hundred percent indicates flow downstream at all times, and O percent
is flow upstream at all times.
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Figure 14, Monthly average May model surface velocity

DISCHARGE CANAL TRINITY RIVER

Figure 15. Monthly average May model bottom velocity
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4 Conclusions

This report records the development of a 3-D state-of-the-art hydrodynamic
and salinity numerical model for the Galveston Bay estuary. The model’s
purpose is to produce flow fields and salinity fields for evaluation of the
impact of the proposed deepening of the Houston-Galveston Navigation
Channel. The results of this model are to be used as input to an ecosystem
model to evaluate oyster production. This report details the validation of the
numerical hydrodynamic and salinity model.

The actual numerical code used herein is the RMA10-WES 3-D finite
element program. Its principal advantage is that it can reproduce complex
geometric features quite easily.

In the validation process the first step undertaken was to run the model and
make appropriate adjustments to reasonably match a short period of prototype
data. The major adjustment in this step was to the bay roughness. After the
completion of this process, the model was run with no additional adjustment
for 6 months during which extensive field data were collected. Comparisons
were then made between the model and the field results. The period of the
field record includes the salinity response to a very high freshwater inflow and
the salinity rebound during the subsequent dry period. This period offers a
very rigorous test of model reliability.

An uncertainty analysis of the primary boundary conditions concluded that
no additional adjustment of the model was warranted, since the difference
between model and prototype salinity is generally less than the impact of the
uncertainty of the Gulf salinity and upland freshwater inflow magnitude.

The environmental resource agencies associated with this project chose
oysters as the indicator species for determination of the project impact. The
suitability of the model to serve as a tool for evaluation of the environmental
impact of plan modifications was decided based upon the variability of other
input used in the oyster model. The difference between the model results and
those of the prototype was of the same relative magnitude as the other input
parameters used by the oyster model. Therefore the hydrodynamic model has
been shown to be valid for evaluation of tides, velocity fields, and salinity
fields within Galveston Bay and can serve as a reliable driver for the subse-
quent oyster model evaluations.
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